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Erdos-Faber-Lovasz Conjecture

Abstract
A conjecture of Erdos, Faber, and Lovasz states that if p complete graphs,

each having exactly p vertices, have the property that every pair of complete
graphs has at most one shared vertex, then the union of the graphs can be
colored with p colors. This conjecture can be broken up into three cases, (i)
graphs that contain no propellers, (ii) graphs with propellers where the pins are
non adjacent, (iii) graphs with propellers and adjacent pins. We will prove the
affirmative for (i) and provide a bound of p+ 1 for (ii).
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1 Introduction

Paul Erdos, born in Hungary circa 1913, grew to be one of the most famous
mathematicians. He was known for his uncanny abilities as a problem solver
as much as he was for living an eccentric lifestyle. In his lifetime he published
around 1,500 mathematical aticles[1]. The only other mathematician who can
even begin to compare with Erdos’s accomplishments is Leonhard Euler. Part
of the key to Erdos’s success, in addition to being a naturally gifted thinker, was
his highly collaborative nature. He believed that mathematics was more of a so-
cial activity, and by the time he passed away had 511 different collaborators[2].
Not only did he collaborate with a lot of people, but he worked in so many
different branches of mathematics that eventually people created what is called
the Erdos number. A person’s Erdos number represents said person’s degree of
separation from Erdos himself based upon their collaboration with him. So a
person who worked directly with Erdos on a paper would have an Erdos number
of 1, while a person who worked on a paper with that collaborator would have
an Erdos number of 2. Most mathematicians have an Erdos number less than 5,
which is a true testament to how prevalent Erdos was within the mathematical
community.

However, despite Erdos’s great contributions to mathematics, he himself was
not so much a theory builder as much as he was a problem solver. Erdos loved
to solve problems and throughout his career would offer payments for solutions
to unsolved problems. His payments would range from $25 for problems that
he felt were just outside the reach of current mathematical thinking to several
thousand dollars for problems that were both extremely difficult along with be-
ing mathematically significant. For example, one of the most notable of these
problems is the Erdos conjecture on arithmetic progressions which Erdos offered
$5,000 for a solution[3].

Vance Faber is an American born mathematician who specializes in combina-
torics, applied linear algebra, and image processing. He received his Ph.D. from
Washington University in Saint Louis and continued on to become a professor at
the University of Colorado at Denver[4]. Throughout the years that followed he
worked at Los Alamos National Laboratory as a part of the Computer Research
and Applications group, and eventually became the Group Leader.

Laszo Lovasz, another prominent Hungarian mathematician, is best known
for his work in combinatorics. He has received many awards for his contributions
to the mathematical community including the Wolf Prize, Knuth Prize and the
Kyoto Prize[5]. Lovasz has worked at many prestigious universities including
Eotvos Lorand University in Hungary along with Yale University. Additionally,
in 2014 Lovasz was elected to be the president of the Hungarian Academy of
Sciences.

The Erdos-Faber-Lovasz conjecture was initially valued by Erdos at $50 but
several years had passed without any solution. Erdos recognized the surprising
difficulty of the problem and raised the reward to $500. This means that one of
the world’s greatest mathematicians to ever live viewed this to be a very chal-
lenging problem. We state the conjecture of Erdos, Faber, and Lovasz as follows.
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Conjecture If p complete graphs, each having exactly p vertices, have the
property that every pair of complete graphs has at most one shared vertex, then
the union of the graphs can be colored with p colors.
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2 Background Information

Definition A graph G is a finite, nonempty set of vertices together with a
(possibly empty) set of unordered pairs of distinct vertices called edges.

Definition The degree of a vertex v in a graph G is the number of edges of G
incident with v.

Definition ∆ will be used to represent the maximum degree in a graph G.

Definition δ will be used to represent the minimum degree in a graph G.

Definition A graph G is regular of degree r if for each vertex v of G, deg v = r.

Definition A complete (p,q) graph is a regular graph of degree p−1, we denote
this graph by Kp.

Definition A graph H is a subgraph of a graph G if V (H) ⊂ V (G) and E(H) ⊂
E(G).

Definition We say H is an induced subgraph of G if H ⊂ G and E(H) =
{uv|u, v ∈ V (H) and uv ∈ E(G)}

Definition An assignment of colors to the vertices of a graph G, one color to
each vertex, so that adjacent vertices are assigned different colors is called a
coloring of G.

Definition A coloring in which n colors are used is an n-coloring. The mini-
mum n for which a graph G is n-colorable is called the chromatic number of G
and is denoted by χ(G).
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3 Examples

Terminology: We call a graph an EFL-graph if it satisfies the conditions of
the Erdos-Faber-Lovasz Conjecture.

To gain a better understanding of what the conjecture is stating we will look at
a few examples of EFL-graphs.

Figure 1: p=3

Figure 1 shows two different EFL-graphs with p = 3. Notice that in each case,
there are three copies of K3, with each pair of complete graphs only overlapping
in one vertex, and that we can quite easily color these graphs in three colors.

Figure 2: p=4

Figure 2 shows an EFL-graph with p = 4. Again notice that there are four
copies of K4, with each pair of complete graphs only overlapping in one vertex,
and this graph can also be colored using four colors.
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Figure 3: p=5

Figure 3 shows an EFL-graph with p = 5. It is hard to see with all the edges.
To make it easier to see these graphs we will show only the outer cycle of each
complete graph. So for example K4 normally looks like this

but now with our new notation it will look like this

So now we can redraw Figure 3 as follows to make it easier to visualize.
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Figure 4: p=5 with new notation

For the remainder of the paper we will use this shorthand notation to represent
complete graphs.
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4 Partial Results

This conjecture was first formulated in 1972, and has since has been reformulated
into equivalent versions relating to both hypergraphs and even combinatorial
arguments in hopes of making progress. In 1988, using hypergraphs, Chiang
and Lawler showed that if G is an EFL-graph,

χ(G) ≤ 3p

2
− 2.

In 1992, Kahn improved this result to show that for a nearly-disjoint hypergraph
on n vertices which is an EFL-graph

χ(G) ≤ p+ o(p).

The most recent result came from Romero and Alonso-Pecina in September of
2014. They showed that the conjecture is true for all

p ≤ 12.

Why this problem still remains unsolved is a mystery, as it is easy to compre-
hend, yet deceptively difficult to prove[6][7][8].
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5 General Coloring Theorems

While graph coloring is a relatively new area of mathematics there are a few
general theorems that have been developed which give an upper bound on the
coloring number for a general graph. However, in this section we will discuss
why these theorems have little use to us in making progress on this conjecture.

Theorem 5.1. First General Theorem on Vertex Coloring: For every graph G,
χ(G) ≤ 1 + ∆(G). This states that the coloring number of a graph G is less
than or equal to one more than the maximum degree of the graph.

This theorem is of little use to us because in an EFL graph, any two com-
plete graphs sharing a common vertex will then have a vertex with a degree of
at least 2(p− 1), see figure below, which by this theorem would then give us an
upper bound of 2(p− 1) + 1 for the coloring number, which is much higher than
our target for the conjecture.

Figure 5: Two K5 that share a single vertex

Theorem 5.2. Second General Theorem on Vertex Coloring: For every graph
G, χ(G) ≤ 1+max δ(G′), where the maximum is taken over all induced sub-
graphs G′ of G. In other words, the coloring number of a graph G is less than
or equal to one more than the maximum of the minimum degrees on all induced
subgraphs.

It is a little harder to see where this theorem fails. However if we look at
the case when p = 5 and we have the property that every complete graph is
connected to every other complete graph, then we will note that there are five
vertices with degree 4 and the remaining all have degree 8. So it would seem
that the theorem would hold because our δ = 4 and thus δ + 1 = 5. However,
we must keep in mind that we need to look at the maximum of the minimum
degrees on all induced subgraphs.
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Figure 6: EFL-graph with p=5 and each K5 is connected to every other K5

Let us consider the induced subgraph in which we remove all of the vertices
of degree 4. Now we have obtained a new graph (as shown below) which is
6-regular.

Figure 7: The induced subgraph formed by removing all vertices of degree 4

Hence the minimum degree of this graph is 6 which by the above theorem would
imply that the graph is 6 + 1 = 7 colorable. This is an improvement over the
first theorem, however, this is only one configuration and the fact that it did
not work means that not only can we not use it to solve this conjecture, but it
also means that we cannot use it to form any helpful upper bounds.
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6 Maximum Connected Graphs

In order to make further progress on this conjecture we must first introduce
some new definitions. Let it also be noted that throughout the remainder of
the paper let the graph G denote a graph which satisfies the conditions in the
conjecture.

Definition A graph G is called maximum connected if every complete graph
Kpi
⊂ G, shares a vertex with every other complete graph in G.

Figure 8: Maximum Connected EFL-graph when p=5

Definition Given a graph G the skeletal subgraph is the induced subgraph of
G where the vertices are all of those that are shared with more than one copy
of a complete graph.

Figure 9: Skeletal Subgraph when p=5
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Definition A propeller is the union of three or more complete graphs that all
share a single vertex.

Figure 10: An EFL-graph with a propeller when p=4

In this section we will show that all graphs G that don’t have any propellers
have a coloring number of p.

Lemma 6.1. Let H be the skeletal subgraph of a graph G. If χ(H) ≤ p then
χ(G) = p.

Proof.
Assume H is the skeletal subgraph of a graph G and χ(H) ≤ p. By the construc-
tion of the skeletal subgraph the vertices not included in H are only included
in one complete graph. Therefore, these vertices are connected to exactly p− 1
vertices. We also know that the skeletal subgraph contains at most p−1 vertices
of a single Kp graph. Therefore, if the skeletal subgraph is p colorable, then
a copy of a complete graph in G can have at most p − 1 colored vertices from
the skeletal subgraph. This leaves at least one color left to color the remaining
vertex. Hence, the entire graph is p colorable.

Now we will look at the skeletal subgraphs of maximum connected graphs
and note the following.

• There are
p−1∑
i=0

(p− 1)− i = p2−p
2 vertices.

• Since every vertex is shared between two copies of Kp−1, we have that
every vertex has degree 2(p− 2).

• There are p copies of Kp−1 embedded within the subgraph, because ini-
tially there were p copies of Kp but since we removed one vertex from each
individual copy we now have copies of Kp−1.

• Every copy of Kp−1 shares a unique vertex with every other copy of Kp−1,
and this is by virtue of the fact that there are no propellers.
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Lemma 6.2. Let n = p2−p
2 , and let H be the skeletal subgraph of a maximum

connected graph. Then,
χ(H) = n

b p2 c

Proof.
Proof by Induction, Base Case: Consider when p = 4

Figure 11: Maximum connected case when p=4

Figure 12: Skeletal Subgraph of Maximum Connected Graph when p=4

WLOG pick a vertex A. A is included in two copies of Kp−1 and is adja-
cent to two vertices in the remaining copies of Kp−1. Removing vertex A and
all of the vertices adjacent to A eliminates two copies of Kp−1 and two vertices
from both of the remaining graphs. Thus leaving only one vertex E. Therefore,
A and E can be colored the same color, moreover, the entire subgraph can be
colored in 3 colors and 3 = 6

b 42 c
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Case 2: p = 5

Figure 13: Skeletal Subgraph of Maximum Connected Graph when p=5

The proof for this is the same as the proof for when p = 4 however we now note
that the subgraph can be colored using only 5 colors and 5 = 10

b 52 c

Inductive Step: Suppose this holds true for all p ≤ k. Consider the case where
p = k + 1. This implies that the skeletal subgraph has k + 1 copies of Kk. If
we pick one copy say Kk1

, and let v be a vertex in Kk1
, then we know that v

is also a vertex in another complete graph which we will call Kk2
. (We know

this because every vertex in the skeletal subgraph is defined because it is shared
between two copies of Kk+1). Similarly for that same reason, each vertex in
Kk1

that is not v is also a vertex in a unique other copy of Kki
, and the same

is true for the vertices in Kk2
. Therefore, if we remove v and all of the ver-

tices that are adjacent to v we end up removing all of Kk1
and Kk2

. This in
turn removes two vertices from all the remaining complete graphs. Hence, we
now have a subgraph with k − 1 copies of Kk−2. By our inductive hypothe-
sis we have that this subgraph Hk−1 satisfies the following, χ(Hk−1) = nk−1

b k−1
2 c

,

where nk−1 = (k−1)2−(k−1)
2 . However, since we already picked a vertex v before

creating this subgraph we have that χ(Hk+1) = nk−1

b k−1
2 c

+ 1 = nk+1

b k+1
2 c

.

Corollary 6.3. All maximum connected graphs are p colorable.

Proof. By lemma 2.2 we know that the coloring number of the skeletal subgraph
of a maximum connected graph can be given by χ(H) = n

b p2 c
. It is important to

note that this is equal to p− 1 when p is even and p when p is odd. Therefore,
χ(H) ≤ p. Hence by lemma 2.1, this implies that χ(G) = p.
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Theorem 6.4. If a connected graph G contains no propellers then χ(G) = p.

Proof. Let G be a connected graph with no propellers and G∗ the corresponding
maximum connected graph with no propellers. Similarly, let H be the skeletal
subgraph of G, and H∗ be the skeletal subgraph of G∗. Then we have that
H ⊂ H∗. By lemma 2.2 we have that χ(H∗) ≤ p and since H ⊂ H∗ it follows
that χ(H) ≤ p. Since H is the skeletal subgraph of G, we have that χ(G) = p
by lemma 2.1.
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7 Graphs with Propellers

Definition A propeller is the union of three or more complete graphs that all
share a single vertex.

Definition The vertex that is shared within the propeller is called the pin.

Definition Each complete graph that is a part of the propeller is called a wing.

We have just shown that all graphs that do not contain a propeller satisfy
the conditions of the conjecture. In this portion we will show that if a graph
contains propellers and the pins are not adjacent, then

χ(G) ≤

{
p, if p is even

p+ 1, if p is odd

First we will cover the trivial cases. If a graph G has a single propeller with p
wings then it is trivially p colorable. If a graph G has a single propeller with
p − 1 wings and a complete graph sharing a vertex with each wing then the
skeletal subgraph is isomorphic to Kp. Therefore the skeletal subgraph is p
colorable so the graph G is p colorable.

7.1 Inversions

We will now describe the process in which we create what is called the inversion
of a graph.

If there are w wings then there will always be at least w − 1 vertices not con-
nected to any other copy of a complete graph. Therefore, if we look at each wing
and take out the nonshared vertices and the pin we will always be able to get w
copies of Kw (because each wing will have a copy of the pin included). Now if
we remove the pin from all of the graphs we will obtain w copies of Kw−1. We
can arrange these into the maximum connected graph. Inserting this into the
original graph yields a graph with no propellers.

Example 7.1.
Constructing the inversion on a graph with p = 4.

17



Figure 14: An EFL graph with one propeller when p=4

Figure 15: Isolate the unshared vertices and the pin

Figure 16: Union graphs into maximum connected case such that the pins are
never shared between two complete graphs
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Figure 17: Insert the above figure back into the original graph

Theorem 7.2. If a graph G has a propeller then

χ(G) ≤

{
p, if p is even

p+ 1, if p is odd

Proof.
Suppose a graph G has a propeller. Then we can do an inversion on the pin
to create a maximum connected graph in which the pin is not shared in any
of the copies of the complete graphs formed. Inserting the inversion back into
the original graph G will produce a new graph G′ which contains no propellers.
Therefore, by lemma 2.2 we know the skeletal subgraph H of G′ satisfies the
following,

χ(H) ≤

{
p− 1, if p is even

p, if p is odd

Hence, if p is even we can then color the pin with the pth color, and if p is odd
then we will need an extra color to color the pin so we would need p+ 1 colors.
It then follows that we have

χ(G) ≤

{
p, if p is even

p+ 1, if p is odd

Corollary 7.3. If a graph G contains more than one propeller, and no two pins
are adjacent, then

χ(G) ≤

{
p, if p is even

p+ 1, if p is odd
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Proof.
Assume a graph G has more than one propeller and no two pins are adjacent.
Then we can do an inversion around every pin in the graph G. Now we have a
graph G′ which contains no propellers. As in Theorem 3.2 we know that this
implies that χ(G′) ≤ p implying that we will need a new color for each pin. But
since no two pins are adjacent we can use this newly introduced color to color
all the pins. Therefore,

χ(G) ≤

{
p, if p is even

p+ 1, if p is odd
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